Al applications in healthcare

Louis Abraham

March 26th 2019

e-HealthWorld, Monaco

About me

Louis Abraham

- ► Education: École polytechnique, ETH Zurich
- Experience:
 - Quant @ BNP Paribas
 - ▶ Deep learning @ EHESS / ENS Ulm
 - Data protection @ Qwant Care

Non-exhaustive list of current and potential AI applications in medicine

- Basic biomedical research
 - Automated experiments
 - Automated data collection
 - ► Gene function annotation
 - Prediction of transcription factor binding sites
 - Simulation of molecular dynamics
 - Literature mining

Non-exhaustive list of current and potential AI applications in medicine

- Translational research
 - ▶ Biomarker discovery
 - Drug-target prioritization
 - Drug discovery
 - Drug repurposing
 - Prediction of chemical toxicity
 - Genetic variant annotation

Non-exhaustive list of current and potential AI applications in medicine

- Clinical practice
 - ► Disease diagnosis
 - Interpretation of patient genomes
 - ▶ Treatment selection
 - Automated surgery
 - Patient monitoring
 - ▶ Patient risk stratification for primary prevention

The success of automated medical-image diagnosis

Radiology

- detection of lung nodules using computed tomography images
- diagnosis of pulmonary tuberculosis and common lung diseases with chest radiography
- breast-mass identification using mammography scan

Dermatology

- dermatologist-level accuracy in diagnosing skin malignancy trained on 129,450 clinical images
- Ophthalmology
 - expert level in referable diabetic retinopathy and diabetic macular oedema identification trained using 128,175 retinal images
- Pathology
 - detection of prostate cancer from biopsy specimens
 - identification of breast cancer metastasis in lymph nodes
 - detection of mitosis in breast cancer
 - net deficit of more than 5,700 full-time equivalent pathologists by 2030

Other domains

- Genome interpretation
 - ► Deep learning outperforms conventional methods
- Biomarker discovery

A few examples from the PhysioNet challenge

- clinical databases
- ▶ library of publications
- software
- challenge

PhysioNet 2000: Detecting and quantifying apnea based on the ECG

(Goldberger et al. 2000)

- ➤ 70 recordings of ECG signal digitized at 100 Hz with 12-bit resolution, continuously for approximately 8 hours split in training and test dataset
- ▶ 1 label per minute
- ▶ 2 tasks: detection per patient and detection per minute
- results: 100% and 90% accuracy

PhysioNet 2000: Detecting and quantifying apnea based on the ECG

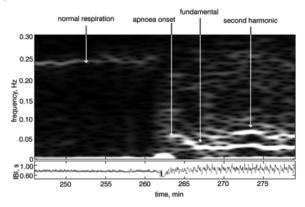


Fig. 2 Visual detection of one method is illustrated: periods of apnoea were visually identified by looking at spectrogram (MCNAMES and FRASER, 2000) in 0.02-0.08 Hz range. A lot of energy in this region was indicative that signal contained apnoea. Frequency range of normal respiration was also inspected to see if there was a periodic pattern. This 40-year-old male had an apnoea/hypopnoea index of 33 events per hour

PhysioNet 2004: Spontaneous Termination of Atrial Fibrillation

(Moody 2004)

- ▶ Is it possible to predict if (or when) an episode of atrial fibrillation will end spontaneously?
- ▶ 80 one-minute recordings of two simultaneously recorded ECG signals
- 3 classes
 - N: non-terminating AF
 - S: terminates one minute after the end of the record
 - T: terminates immediately after the end of the record
- ► Training 10N+10S+10T, Test A 15N+15T, Test B 10S+10T
- results: 97% and 100% accuracy
- similar method: simple signal processing

PhysioNet 2016: Classification of Normal/Abnormal Heart Sound Recordings

(Liu et al. 2016)

- ▶ 4,430 recordings taken from 1,072 subjects, totalling 233,512 heart sounds
- Additional data: subject demographics (age and gender), recording information, synchronously recorded signals (such as ECG), sampling frequency and sensor type used
- 3 labels: Normal, AF, Noisy
- 2 metrics: Sensitivity (detecting abnormal) and Specificity (detecting normal)

PhysioNet 2016: Classification of Normal/Abnormal Heart Sound Recordings

Rank	Entrant	Se	Sp	MAcc	Method note
1	Potes et al.	0.9424	0.7781	0.8602	AdaBoost & CNN
2	Zabihi et al.	0.8691	0.8490	0.8590	Ensemble of SVMs
3	Kay & Agarwal	0.8743	0.8297	0.8520	Regularized Neural Network
4	Bobillo	0.8639	0.8269	0.8454	MFCCs, Wavelets, Tensors & KNN
5	Homsi et al.	0.8848	0.8048	0.8448	Random Forest + LogitBoost
6†	Maknickas	0.8063	0.8766	0.8415	Unofficial entry - no publication
7	Plesinger et al.	0.7696	0.9125	0.8411	Probability-distribution based
8	Rubin et al.	0.7278	0.9521	0.8399	Convolutional NN with MFCs
17†	Voting of top N=38 algorithms	0.7120	0.9015	0.8068	Simple mode
43†	Sample entry	0.6545	0.7569	0.7057	See section 3

Table 3. Final scores for the top 8 of 48 entrants, the example algorithm provided and a simple voting approach. Best performances of competition entrants are in bold. † denotes an unofficial entry. MFCC = Mel Frequency Cepstral Coefficients. NN = Neural Network. SVM = Support Vector Machine. CNN = Convolutional NN. KNN = K Nearest Neighbors.

Quite a variety of approaches

PhysioNet 2018: You Snooze, You Win

(Ghassemi et al. 2018)

- ▶ 1,983 polysomnographic recordings
- Clinical features and 13 signals
- detect arousals

PhysioNet 2018: You Snooze, You Win

Rank	Entrant	AUPRC
1	Howe-Patterson, Pourbabaee & Benard	0.54
2	Kristjánsson, Þráinsson, Ragnarsdóttir,	0.45
	Marinósson, Gunnlaugsson, Finnsson, Jónsson,	
	Helgadóttir, & Ágústsson	
3	He, Wang, Liu, Zhao, Yuan, Li, & Zhang	0.43
4	Varga, Görög, & Hajas	0.42
5	Patane, Ghiasi, Scilingo, & Kwiatkowska	0.40
6	Miller, Ward, & Bambos	0.36
6	Warrick & Homsi	0.36
8	Bhattacharjee, Das, Choudhury, & Banerjee	0.29
8	Szalma, Bánhalmi, & Bilicki	0.29
10	Parvaneh, Rubin, Samadani, Prakash, &	0.21
	Katuwal	
11	Plešinger, Nejedly, Viscor, Andrla, Halámek, &	0.20
	Jurák	
12	Zabihi, Rad, Särkkä, Kiranyaz, Katsaggelos, &	0.19
	Gabbouj	
13	Schellenberger, Shi, Mai, Wiedemann,	0.14
	Steigleder, Eskofier, Weigel, & Kölpin	
14	Li, Cao, Zhong, & Pan	0.10
15	Jia, Yu, Yan, Zhao, Xu, Hu, Wang, & You	0.10
16	Shen	0.07
	Unofficial entries	
-	Li & Guan †	0.55
_	Bilal, Khan, Khan, Qureshi, Saleem, &	0.15
	Kamboh †	
_	Wang, Wang, & Li †	0.07

Table 3. Final scores for the 19 teams in the Challenge. † denotes unofficial entries.

The top approaches used neural networks

Conclusion

- Older systems are still not widely used
- Increase in dataset sizes
- ▶ Al is meant to complement, not replace doctors

References I

Ghassemi, Mohammad M, Benjamin E Moody, LH Lehman, Christopher Song, Qiao Li, Haoqi Sun, Roger G Mark, M Brandon Westover, and Gari D Clifford. 2018. "You Snooze, You Win: The Physionet/Computing in Cardiology Challenge 2018." *Computing in Cardiology* 45: 1–4.

Goldberger, Ary L, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. 2000. "PhysioBank, Physiotoolkit, and Physionet: Components of a New Research Resource for Complex Physiologic Signals." *Circulation* 101 (23). Am Heart Assoc: e215–e220.

Liu, Chengyu, David Springer, Qiao Li, Benjamin Moody, Ricardo Abad Juan, Francisco J Chorro, Francisco Castells, et al. 2016. "An Open Access Database for the Evaluation of Heart Sound Algorithms." *Physiological Measurement* 37 (12). IOP Publishing: 2181.

References II

Moody, GE. 2004. "Spontaneous Termination of Atrial Fibrillation: A Challenge from Physionet and Computers in Cardiology 2004." In *Computers in Cardiology, 2004*, 101–4. IEEE.

Yu, Kun-Hsing, Andrew L Beam, and Isaac S Kohane. 2018. "Artificial Intelligence in Healthcare." *Nature Biomedical Engineering* 2 (10). Nature Publishing Group: 719.