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Introduction / Motivation / Setting

- Group testing is great, how can we study it with a more practical approach?

- Constraints
- Number of tests
- Number of samples collected per person
- Number of samples mixed together

- Real world setting

All options don’t have the same probability
We don’t know how many people are ill
Tests are not perfect

Testing takes time




Bayesian 101

- Represent the state of each person with a bit
- Input a prior over the n-bit strings
- Each test updates the prior

Trivia: Bayesian update is

- commutative (order of tests does not matter)
- compositional (testing in parallel or sequence does not matter)



Non-adaptive testing

n=4 people, m=2 tests
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(less with constraints on rows and columns)

Search space: (



Adaptive testing

1. Test people
2. Update prior
3. Go backto 1.

Search space: (2” — 1)2m



Exploration using ES

- Advantages
- No tricky math
- Exact computation
- Choice of objective
- Choice of constraints

- Disadvantages
- Expensive
- Almost no guarantee on the solution optimality



ES: how we do it

- Search space: binary strings of size n x m

- (1 + A) strategy: mutate the best individual into A offsprings and repeat
- Constant initialization: simple and best to satisfy constraints

- Luby’s restart strategy

- Optimal restart strategy up to a logarithmic constant (Thm 1)
- Rule-of-thumb: O(n * m) as basis
- Fitness criterion
- Conditional entropy (= expectation of entropy)
- Expected confidence (= expectation of mode)
- Expected number of diagnosed with confidence > threshold




ES in practice

- Gives a good intuition
- Super useful to give counter-examples
- Scalable up to ~10 people and tests

You can test it!

https://louisabraham.qgithub.io/crackovid/crackovid.html



https://louisabraham.github.io/crackovid/crackovid.html

The case for greedy

ES is not scalable to optimize adaptive strategies or for large n
Can we be greedy? YES

Magic of submodularity

1. Find a hard optimization problem

2. Show that your objective is monotone submodular
3. Profit

We apply it to conditional entropy
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Conditional entropy

- Adaptive monotonicity is trivial: making one more test decreases the
conditional entropy (information never hurts)
- Adaptive submodularity is NOT trivial
- Conditional entropy is not submodular in general
Take b1, b2 random bits and b3 = b1 A b2
H(b3) = H(b3 | b1) = 1
H(b3 | b1, b2) =0
So b2 “helps” more when combined with b1 than alone
- But our model only allows for OR operations and independent corruption
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Is conditional entropy of tests submodular?
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Is conditional entropy of tests submodular?
Probably!
51 1int main() {

D2 int TESTS = 100000;
53 while (TESTS—-) {
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Implications of submodularity

- In short, approximation ratio 1 - 1/e = 0.63

- We also get robust bounds when:
changing the number of tests
setting wrong priors
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Bloom filters for test design

- We want to gain a lot of information with a small number of tests

- Bloom filters 101: store sets in a compressed way
- Take a bit array A of size m and k hash functions h1..hk that go to [|1;m|]
- For each x, set A[h1(x)] = A[h2(x)] = ... = A[hk(x)] = 1
- To test whether an element x is in the set, compute A[h1(x)] & A[h2(x)] & ... & A[hk(x)]
- Nice analysis using Azuma’s inequality
- Let's try to store the set of ill patients in the results of m tests
- ks the number of samples of each patient
- hi(x) tells where i-th sample goes
- AJj] is the (ideal) outcome of the j-th test
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Improving on Bloom filters

- Bloom filters are meant for online applications that use stream inputs
- Hash functions are just meant for load balancing (don’t put many items in the
same bin)
- Instead, we can use perfect load balancing
- Taken=k*b,m=g*b « P >
- Fori=1..g O O O
- Shuffle [|1, n
Assign El...k tlc]) batch 1 O O O

Assign k+1...2k to batch 2
. Hash
etc (b times) hy

- Total: g rows, b columns

Pools

g Yab

Secret s
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Theory of Bloom Origami Assays

- Recalln=k*b,m=g*b
- How can we choose b? Depends on the prevalence p

Thm4:b=np/log(2)
(assume perfect tests and maximize probability of perfect decoding)

- If pis not uniform, how can we balance the bins to maximize information gain
for a single row?

Thm 3: Make all bins have a probability equal to a constant depending on tnr
and tpr
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Posterior decoding

- Testing has 2 components: test design and posterior decoding
- We have scalable designs, we need scalable decoding

Remark: we don’t need the distribution over the bitstrings of length n, only n
marginals.

- We have a PGM

- Can we apply message passing? We don’t have a polytree, loopy belief
propagation comes with no guarantee but gives acceptable performance

- Can we find better?
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Performant decoding: MITM

In practice, p << 72 and most secrets never happen

Likewise, TNR and TPR are close to 1 and most bits are correct
(if p="%2and TNR = TPR = 1, equivalent to #SAT)

Let's bruteforce over a pruned search space!

(LT [=T =] 1]
LI [=] [=] [=

Restricted set Likely Observed
of encodings encodings output

Restricted
set of secrets



MITM details

- Pre-computation:
- Cut a portion < € of the secret space (consider secrets with at most k infected people)
- Store the encodings of those secrets with the summed marginals
- Inference:
- Ignore decoding errors with probability < €
- Sum the joint marginals for all possible pre-computed encodings
- Normalize

- Thm 5: For any test result t, the above algorithm estimates the posterior P(si |
t) with error at most 4€/P(t) and produces an upper bound on this error
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Comparison of test designs (small scale)

Small Scale (N =8, M = 6)
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Comparison of test designs (small scale)

(a) Bloom: (b, g) = (2,3) (b) Entropy: (m, k) = (6, 3)

(c) Bloom: (b, g) = (3,2) (d) Entropy: (m, k) = (6,2)
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Comparison of test designs (large scale)
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Comparison of decoding algorithms

True Positive Rate
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Unfairness of group testing

- Some designs for group testing are unfair on a small scale! (our ES
strategy seems fair)

- Origami Bloom Assays are still randomly fair when using uniform prevalence

- When priors are not uniform, how does group testing affect the TPR/TNR of
the posterior marginals?

- What is the responsibility of the doctor when deciding priors, affecting patients
or deciding on a testing scheme?
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