Bloom Origami Assays

Abraham et al.

Outline

- Introduction / Motivation / Setting
- Adaptive vs non-adaptive testing
- Exploration using ES
- The case for greedy
- Bloom filters for test design
- Meet-in-the-middle decoding
- Experimental results
- Unfairness of group testing

Introduction / Motivation / Setting

- Group testing is great, how can we study it with a more practical approach?
- Constraints
 - Number of tests
 - Number of samples collected per person
 - Number of samples mixed together
- Real world setting
 - All options don't have the same probability
 - We don't know how many people are ill
 - Tests are not perfect
 - Testing takes time

Bayesian 101

- Represent the state of each person with a bit
- Input a prior over the n-bit strings
- Each test updates the prior

Trivia: Bayesian update is

- commutative (order of tests does not matter)
- compositional (testing in parallel or sequence does not matter)

Non-adaptive testing

n=4 people, m=2 tests

Search space: $\binom{2^n+m}{m}$

(less with constraints on rows and columns)

Adaptive testing

- 1. Test people
- 2. Update prior
- 3. Go back to 1.

Search space:
$$(2^n-1)2^m$$

Exploration using ES

- Advantages
 - No tricky math
 - Exact computation
 - Choice of objective
 - Choice of constraints
- Disadvantages
 - Expensive
 - Almost no guarantee on the solution optimality

ES: how we do it

- Search space: <u>binary strings</u> of size n x m
- $(1 + \lambda)$ strategy: mutate the *best* individual into λ offsprings and repeat
- Constant initialization: simple and best to satisfy constraints
- Luby's restart strategy
 - Optimal restart strategy up to a logarithmic constant (Thm 1)
 - Rule-of-thumb: O(n * m) as basis
- Fitness criterion
 - Conditional entropy (= expectation of entropy)
 - Expected confidence (= expectation of mode)
 - Expected number of diagnosed with confidence > threshold

- ...

ES in practice

- Gives a good intuition
- Super useful to give counter-examples
- Scalable up to ~10 people and tests

You can test it!

https://louisabraham.github.io/crackovid/crackovid.html

The case for greedy

- <u>ES is not scalable</u> to optimize adaptive strategies or for large n
- Can we be greedy? YES
- Magic of submodularity
 - 1. Find a hard optimization problem
 - 2. Show that your objective is monotone submodular
 - 3. Profit
- We apply it to conditional entropy

Conditional entropy

- Adaptive monotonicity is trivial: making one more test decreases the conditional entropy (*information never hurts*)
- Adaptive submodularity is NOT trivial
- Conditional entropy is not submodular in general
 - Take b1, b2 random bits and b3 = b1 ^ b2
 - H(b3) = H(b3 | b1) = 1
 - H(b3 | b1, b2) = 0
 - So b2 "helps" more when combined with b1 than alone
- But our model only allows for OR operations and independent corruption

Is conditional entropy of tests submodular?

Is conditional entropy of tests submodular?

Probably!

51 int main() {
52 int TESTS = 100000;
53 while(TESTS--) {

Implications of submodularity

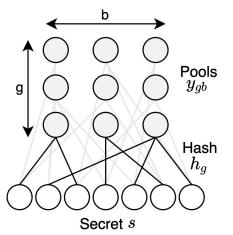
- In short, approximation ratio 1 1/e ≃ 0.63
- We also get robust bounds when:
 - changing the number of tests
 - setting wrong priors

Bloom filters for test design

- We want to gain a lot of information with a small number of tests
- Bloom filters 101: store sets in a compressed way
 - Take a bit array A of size m and k hash functions h1..hk that go to [|1;m|]
 - For each x, set A[h1(x)] = A[h2(x)] = ... = A[hk(x)] = 1
 - To test whether an element x is in the set, compute A[h1(x)] & A[h2(x)] & ... & A[hk(x)]
 - Nice analysis using Azuma's inequality
- Let's try to store the set of ill patients in the results of m tests
 - k is the number of samples of each patient
 - hi(x) tells where i-th sample goes
 - A[j] is the (ideal) outcome of the j-th test

Improving on Bloom filters

- Bloom filters are meant for online applications that use stream inputs
- Hash functions are just meant for load balancing (don't put many items in the same bin)
- Instead, we can use *perfect load balancing*
- Take n = k * b, m = g * b
- For i = 1...g
 - Shuffle [|1, n|]
 - Assign 1...k to batch 1
 - Assign k+1...2k to batch 2
 - etc (b times)
- Total: g rows, b columns



Theory of Bloom Origami Assays

- Recall n = k * b, m = g * b
- How can we choose b? Depends on the prevalence p

Thm 4: b = n p / log(2)

(assume perfect tests and maximize probability of perfect decoding)

- If p is not uniform, how can we <u>balance the bins</u> to maximize information gain for a single row?

Thm 3: Make all bins have a probability equal to a constant depending on thr and tpr

Posterior decoding

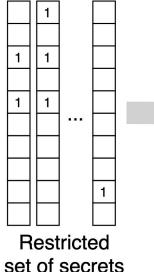
- Testing has 2 components: test design and posterior decoding
- We have scalable designs, we need scalable decoding

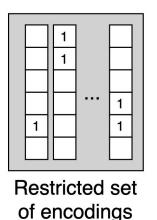
Remark: we don't need the distribution over the bitstrings of length n, only n marginals.

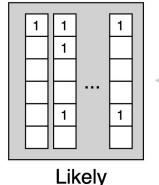
- We have a PGM
- Can we apply message passing? We don't have a polytree, loopy belief propagation comes with no guarantee but gives acceptable performance
- Can we find better?

Performant decoding: MITM

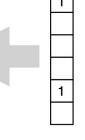
- In practice, p << 1/2 and most secrets never happen
- Likewise, TNR and TPR are close to 1 and most bits are correct
- (if $p = \frac{1}{2}$ and TNR = TPR = 1, equivalent to #SAT)
- Let's bruteforce over a **pruned** search space!







encodings

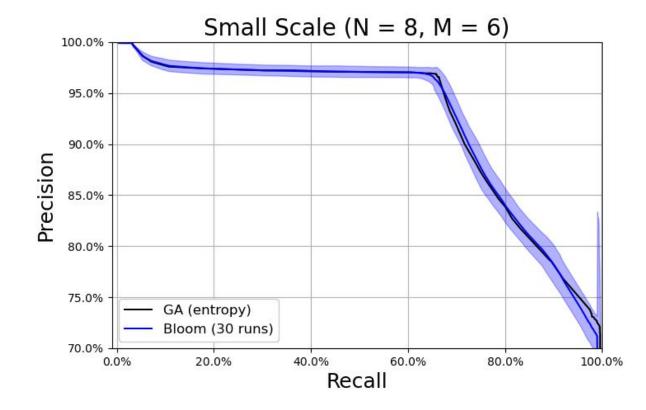


Observed output

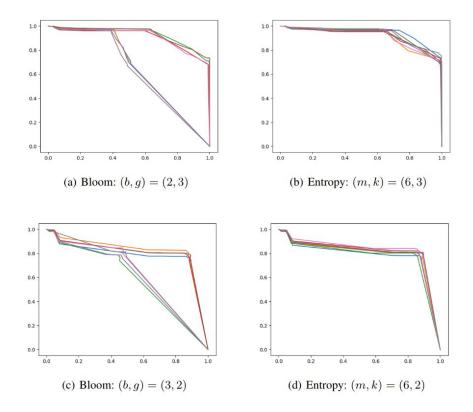
MITM details

- Pre-computation:
 - Cut a portion < \mathcal{E} of the secret space (consider secrets with at most k infected people)
 - Store the encodings of those secrets with the summed marginals
- Inference:
 - Ignore decoding errors with probability < 8
 - Sum the joint marginals for all possible pre-computed encodings
 - Normalize
- Thm 5: For any test result t, the above algorithm estimates the posterior P(si | t) with error at most 4E/P(t) and produces an upper bound on this error

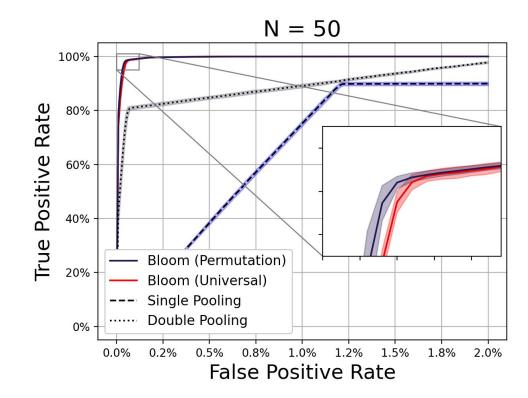
Comparison of test designs (small scale)



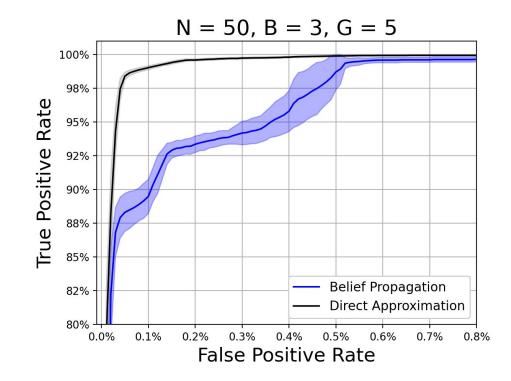
Comparison of test designs (small scale)



Comparison of test designs (large scale)



Comparison of decoding algorithms



Unfairness of group testing

- **Some designs for group testing are** *unfair* **on a small scale! (our ES strategy seems fair)**
- Origami Bloom Assays are still *randomly fair* when using uniform prevalence
- When priors are not uniform, how does group testing affect the TPR/TNR of the posterior marginals?
- What is the responsibility of the doctor when deciding priors, affecting patients or deciding on a testing scheme?