
A puzzle about uniform random variables

Louis Abraham poses two interesting puzzles about uniform random variables on his web

page louis.abraham.github.io. This note is about the second of these puzzles, which

is paraphrased below.

Puzzle 2

Suppose that X1, X2, . . . is a sequence of independent U(0, 1) random variables,

and let Yk = X1 +X2 + . . .+Xk. Let Ux be the smallest value of k for which

Yk > x and define u(x) = E (Ux). The basic puzzle is to find u(1).

The author shows that, for 0 ≤ x ≤ 1, u(x) = exp(x), and hence u(1) = e.

He goes on to consider the more general problem of finding u(n) for positive

integer n and shows that for n ≤ x ≤ n+ 1, u(x) = exp(x)Pn(x), where Pn(.)

is a polynomial of degree n. He gives a recursive scheme for evaluating Pn(.)

and provides convincing numerical evidence that

u(n)− 2n→ 2

3
as n→∞.

The author concludes by asking for a nice proof of this result.

Problems of this type, in which the random variables Xi are independent and identically

distributed, are studied in the branch of probability theory known as renewal theory.

The name comes from a particular area of application that involves items that fail after

a random period of time and have to be replaced or renewed. A standard example is

light bulbs. The random variable Xi represents the time to failure of the ith bulb and

x represents time. The process starts at time zero with a new bulb (in the terminology

of renewal theory, it is an ordinary renewal process) and Ux is the number of bulbs that

have been used by time x, including the bulb that is currently in use. In renewal theory,

it is more common to work with the random variable Nx, the number of renewals that

have occurred by time x, so that Ux = Nx + 1. Note that provided the times to failure

are continuous random variables, there is zero probability of a failure occurring precisely

at time x.

The function n(x) = u(x)−1 giving the expected number of renewals and is a key quantity

in renewal theory, called the renewal function. Given this, it is perhaps unsurprising that

the form of u(x) when the failure times are independent U(0, 1) variables is known and has

in fact been independently rediscovered on several occasions. Nonetheless, it remains an

interesting and instructive puzzle. My aim here is to provide a few notes on the problem,

aimed particularly at people who are not familiar with renewal theory.

First, I show how an explicit expression for u(x) can be obtained using an approach that

is standard in renewal theory. In fact this approach provides the full distribution of Ux,

not just its expectation. Unfortunately, the formula for u(x) gives little insight into its

asymptotic behaviour. However, applying a general asymptotic result for the expected
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number of renewals to the particular case of independent uniform times to failure shows

that it is indeed the case that

u(x)− 2x→ 2

3
as x→∞.

Although the general asymptotic result is simple to apply, it is not easy to prove. There-

fore, I outline a more direct approach due to the distinguished mathematician Harry

Furstenberg, which I think comes closer to providing a ‘nice’ proof.

1 Deriving u(x)

The following is a standard approach in renewal theory. The key observation is that

Pr(Ux > k) = Pr(Yk ≤ x) = Fk(x), say,

where F0(x) = 1. Then

Pr(Ux = k) = Pr(Ux > k − 1)− Pr(Ux > k)

= Fk−1(x)− Fk(x). (1)

Note that Fk(x) = 1 for k ≤ bxc, where bxc is the greatest integer less than or equal to x,

so that the probabilities will be non-zero only for k ≥ bxc+ 1.

From equation (1), and using the fact that Fk(x)→ 0 as k →∞, we have

u(x) =
∞∑
k=1

kPr(Ux = k)

=
∞∑
k=1

k [Fk−1(x)− Fk(x)]

=

∞∑
k=1

Fk−1(x)

= 1 +

∞∑
k=1

Fk(x). (2)

We can make further progress with this because the distribution of sums of independent

U(0, 1) random variables is well studied. For example, it appears in Feller (1971, p.27).

Wikipedia refers to it as the Irwin-Hall distribution and gives the following expression for

the cumulative distribution function

Fk(x) =
1

k!

bxc∑
j=0

(−1)j
(
k

j

)
(x− j)k. (3)

Figure 3 shows the distribution of Ux that results from substituting this expression for
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Fk(x) into equation (1) for x = 5, 10, 20, 40. A result from renewal theory is that the

distribution of Ux is asymptotically normal, and the first three plots do indeed suggest a

progressive approach to normality. But for x = 40, the calculations have failed completely.
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The problem is the well-known instability that often arises when calculating alternating

sums with standard double precision arithmetic. Although the problem is clear at x = 40,

it first arises for much smaller x and can be identified by the occurrence of negative

‘probabilities’. For example, with x = 14, the smallest value obtained is −1.2159× 10−10.

The simplest way to ensure reliable numerical results is to use a high-precision computing

environment.
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We can also substitute for Fk(x) in equation (3), giving

u(x) = 1 +
∞∑
k=1

1

k!

bxc∑
j=0

(−1)j
(
k

j

)
(x− j)k.

Interchanging the order of summation and simplifying gives

u(x) =

bxc∑
j=0

(−1)jex−j
(x− j)j

j!
. (4)

Recall that for n ≤ x ≤ n+ 1, u(x) = exp(x)Pn(x), so we have the explicit expression

Pn(x) =
n∑
j=0

(−1)je−j
(x− j)j

j!
.

There is a small subtlety here when x = n+ 1, since the upper limit of summation should

then be n+1 rather than n. However, it is easy to see that the final term in the summation

is then zero.

The argument used to derive u(x) can be modified to obtain expressions for higher-order

moments, but we omit the details; a formula for var(Ux) is given in the next section.

Although it is nice to have the explicit expression (4) for u(x), it is not clear how it can

be used to ascertain the asymptotic behaviour of u(x) as x → ∞. For this, we turn to

some general asymptotic theory of renewal processes.

2 Limiting form for u(x) as x→∞

I mentioned earlier that equation (4) has been discovered independently on several occa-

sions. I haven’t investigated this systematically, but here are a couple of examples, the

second of which leads us to the relevant asymptotic theory.

Suzuki (2004) considers the problem in terms of the hitting time of a random walk and

finds the distribution of Ux for x ∈ [0, 1] and the expectation function u(x) for x ∈ [0, 2],

noting that u′(x) has a discontinuity at x = 1, although u(x) itself is continuous there.

In a subsequent paper, he gives the distribution of Ux for x ∈ [1, 2] and the expectation

function u(x) for x ∈ [2, 3], noting that u′(x) is continuous at x = 2, but that u′′(x) is

discontinuous there. He also conjectures the general form of the distribution function for

the sum of k independent U(0, 1) random variables and, from this, deduces the correct

general expression for u(x).

Russell (1983) studies the problem using an approach similar to that of the previous

section, although he obtains the probability generating function of Ux, from which he can

easily obtain the variance of U(x) as well as u(x); see Cox (1962) Section 3.2 for a general
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account of this approach. The variance is

var(Ux) = u(x) [2x+ 1− u(x)] ,

implying that u(x) ≤ 2x + 1, since the variance cannot be negative. Russell also obtains

the distribution of Ux, although his equation (2) appears to be incorrect.

In a subsequent letter, Jensen (1984) notes that Russell’s results are largely rediscoveries

of known results in renewal theory. Jensen also gives the result u(x) = 2x + 2
3 + o(1) as

x→∞, citing Feller (1971, p. 385). The reference is to an exercise in Feller, which starts

by asking for a proof of the formula for u(x) and continues

This formula is frequently rediscovered in queueing theory, but it reveals little

about the nature of u(.). The asymptotic formula 0 ≤ u(x)− 2x→ 2
3 is much

more interesting. It is an immediate consequence of (3.1).

Equation (3.1) is part of a general theorem that covers sums of independent and identically

distributed random variables. Whilst the proof of this theorem is short, it builds on other

theorems.

Smith (1959) studies the cumulants of the number of renewals, Nx. Let κn(x) denote the

nth cumulant of Nx. For n > 1, κn(x) is also the nth cumulant of Ux = Nx + 1, whilst for

n = 1, we have

u(x) = E(Ux) = E(Nx) + 1 = κ1(x) + 1.

Smith shows that

κn(x) = anx+ bn + o(1) as x→∞,

where an depends on the first n moments of Xi and bn depends on the first n+1 moments.

Using Smith’s results,

u(x) =
x

µ1
+

µ2
2µ21

+ o(1) as x→∞.

Smith (1959) gives references to previous proofs of this result, the earliest being Täcklind

(1945).

When Xi ∼ U(0, 1), the rth moment is

µr = E (Xr
i ) =

1

r + 1
,

and the previous result leads to

u(x)− 2x→ 2

3
as x→∞.

For the variance, we have

var(Ux) = κ2(x) =

(
µ2
µ31
− 1

µ1

)
x+

(
5µ22
4µ41
− 2µ3

µ31
− µ2

2µ21

)
+o(1) =

2

3
x+

2

9
+o(1) as x→∞,
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a result that is also given by Jensen (1984). As a check, this agrees with the result of

substituting the limiting form for u(x) into the formula for var(Ux).

3 A more direct proof

Rather than appealing to general asymptotic results, it is natural to ask whether a simpler

proof might result by utilising the fact that the Xi’s are independent U(0, 1) variables.

The following is an argument of this type due to Furstenberg (1963). I learned of this

reference from Spencer (2002).

The starting point is the equation

u(x) = 1 +

∫ x

x−1
u(t) dt, (5)

which appears in the original blogpost. Actually, Furstenberg gives the equation (his

equation (1)) as

u(x) = F1(x) +

∫ x

x−1
u(t) dt,

but this is incorrect for 0 < x < 1. Furstenberg’s equation applies to the renewal function,

n(x), not to u(x). However, this is of no great importance since we are interested in the

behaviour of u(x) for large x,

Let h(x) = u(x)− 2x. It follows from (5) that

h(x) = 1 +

∫ x

x−1
[u(t− 2t)] dt+

∫ x

x−1
2tdt− 2x

=

∫ x

x−1
h(t) dt.

The next step of Furstenberg’s argument is to show that h(x) tends to a limit as x→∞.

The proof is terse, understandably since he is writing for professional mathematicians who

can be assumed to have a strong grasp of analysis. Sadly, my own grasp is too tenuous to

allow me to follow the argument properly, but I reproduce it verbatim here for the benefit

of those who can. Note that Furstenberg uses H(.) in place of my h(.).

Now if

H(x) =

∫ x

x−1
H(t) dt

it is easy to show that H(x) tends to a constant. Since H(t) is clearly

bounded, |H ′(x)| is bounded and the translations {H(x+ a)} (a > 1) form

an equicontinuous family. If N = limx→∞ supH(x), we can find a subse-

quence of {H(x+ a)} converging uniformly to a function H(x) =
∫ x
x−1H(t) dt,

so that H ≡ N . But then there must have been unit intervals along which

H(x) ≥ N−ε for any ε. This would give H(X) ≥ N−ε for x sufficiently large.

It follows that limH(x) = N .
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To see what needs to be proved, below is a plot of h(x) for x ∈ [0, 6]. It shows oscillations

that are damping rapidly, so that little detail is visible for x > 3 and an amplified view

of this part of the plot is shown as an inset. It is apparent that h(x) is not differentiable

when x = 1, due to the non-differentiability of u(x) at this point, as noted by Suzuki

(2004).
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The plot certainly supports the idea that h(x) tends to a limit, but in terms of a proof,

we need to show that the peaks and the troughs of the oscillations tend to the same limit,

or more technically that limx→∞ supH(x) = limx→∞ inf H(x).

If we assume that a limit does indeed exist, the final step is to determine its value, c say.

To this end, Furstenberg introduces another function,

g(x) =

∫ 1

0
2th(x+ t) dt

and claims, without giving details, that limx→∞ g(x) = c and that g(x) is independent of

x.
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The limit is probably clear, but formally we can write

g(x) =

∫ 1

0
2th(x+ t) dt

=

∫ 1

0
2tcdt+

∫ 1

0
2t [h(x+ t)− c] dt

= c+

∫ 1

0
2t [h(x+ t)− c] dt.

Hence

|g(x)− c| =

∣∣∣∣∫ 1

0
2t [h(x+ t)− c] dt

∣∣∣∣
≤

∫ 1

0
2t| |h(x+ t)− c| dt.

Since h(x) → c as x → ∞, for any ε > 0 there is an x, say xε such that | |h(x)− c| < ε

whenever x > xε. It follows that |g(x)− c| < ε whenever x > xε and hence that g(x)→ c

as x→∞.

To prove that g(x) is independent of x, we show that g′(x) = 0. To this end, we make the

substitution s = x+ t, which leads to

g(x) =

∫ x+1

x
2(s− x)h(s) ds

= 2

∫ x+1

x
sh(s) ds− 2x

∫ x+1

x
h(s) ds

= 2

∫ x+1

x
sh(s) ds− 2xh(x+ 1).

Therefore

d

dx
g(x) = 2(x+ 1)h(x+ 1)− 2xh(x)− 2

d

dx
{xh(x+ 1)}

= 2x [h(x+ 1)− h(x)] + 2h(x+ 1)− 2h(x+ 1)− 2x
d

dx
h(x+ 1)

= 0.

The last line follows from the fact that

d

dx
h(x+ 1) =

d

dx

∫ x+1

x
h(t)dt = h(x+ 1)− h(x).

Sharp-eyed readers might object that h(x+ 1) is not differentiable at x = 0. However, we

can use the left derivative instead when x = 0.

We can therefore evaluate c as g(0), which gives

h(x)→
∫ 1

0
2th(t) dt as x→∞.
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Substituing for h(.) and recalling that for 0 ≤ t ≤ 1, u(t) = et, gives

u(x)− 2x→
∫ 1

0
2t
[
et − 2t

]
dt as x→∞,

and it is easy to show, using integration by parts, that the integral on the right hand side

evaluates to 2/3.

4 Additional notes

1. Excess lifetime

Another interesting random variable, is Zx, the time that elapses between x and the

next renewal, that is Zx = YUx − x. This goes under various names, including the

excess lifetime, the residual lifetime, the forward recurrence time and the overshoot.

For uniformly distributed Xi, Suzuki (2004, 2005) gives the exact distribution of Zx
for 0 ≤ x ≤ 2. It can also be shown that the limiting distribution as x → ∞ has

probability density function f(z) = 2(1− z) for 0 ≤ z ≤ 1.

A general result for renewal processes is that

E(Zx) = µ1ux − x, (6)

see for example, Tijms (2003, Lemma 2.1.2). Since E(Zx) ≥ 0, this implies that

ux ≥ x/µ1. When the Xi’s are uniformly distributed, (6) leads to the lower bound

u(x)− 2x ≥ 0.

It also follows from (6) that

lim
x→∞

E(Zx) =
1

2
lim
x→∞

[ux − 2x] =
1

3
.

Query 4106814 on Stack Exchange asks if it is possible to prove this result from

first principles, without reference to ux. This would open up a different approach to

proving the asymptotic result for u(x), via (6). However, there are no responses to

this query.

2. Laplace transforms

Laplace transforms are a useful tool in renewal theory. In particular, the Laplace

transform of the renewal function n(x) is

n∗(s) =
f∗(s)

s[1− f∗(s)]
,

where f∗(s) is the Laplace transform of the probability density function of the life-

time distribution. For uniformly distributed lifetimes, f∗(s) = (1 − e−s)/s and we
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obtain

n∗(s) =
1− e−s

s(s− 1 + e−s)
.

The behaviour of the renewal function as x → ∞ can be determined by analysing

the behviour of this transform as s → 0. Cox & Miller (1965, p. 345) sketch the

general approach, but note that the formal proof is difficult.

3. Generating function

Furstenberg’s proof applies for any positive real x. If we are only interested in the

case where x is a positive integer n, then an interesting alternative approach is

provided in response to query 344713 on Math Overflow. The query doesn’t make

any specific mention of the renewal problem, but asks about the sequence Pn(n). In

the responses, it is shown that u(n) = enPn(n) may be obtained as the coefficient of

tn in the series expansion of the surprisingly simple generating function

t

et−1 − t
.

It is further shown, using techniques from complex analysis, that

u(n) = (2n+ 2/3)(1 +O(an)),

where 0 < a < 1.

4. Renewal Theory

Many books on stochastic processes provide introductory material on renewal theory,

including Grimmett & Stirzaker (2020, Chapter 10), Ross (2019, Chapter 7) and

Tijms (2003, Chapters 2 and 8). Cox (1962) is a book length treatment.
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